This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | |- X = U. J |
|
| Assertion | qtopval | |- ( ( J e. V /\ F e. W ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | |- X = U. J |
|
| 2 | elex | |- ( J e. V -> J e. _V ) |
|
| 3 | elex | |- ( F e. W -> F e. _V ) |
|
| 4 | imaexg | |- ( F e. _V -> ( F " X ) e. _V ) |
|
| 5 | pwexg | |- ( ( F " X ) e. _V -> ~P ( F " X ) e. _V ) |
|
| 6 | rabexg | |- ( ~P ( F " X ) e. _V -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
|
| 7 | 4 5 6 | 3syl | |- ( F e. _V -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
| 8 | 7 | adantl | |- ( ( J e. _V /\ F e. _V ) -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
| 9 | simpr | |- ( ( j = J /\ f = F ) -> f = F ) |
|
| 10 | simpl | |- ( ( j = J /\ f = F ) -> j = J ) |
|
| 11 | 10 | unieqd | |- ( ( j = J /\ f = F ) -> U. j = U. J ) |
| 12 | 11 1 | eqtr4di | |- ( ( j = J /\ f = F ) -> U. j = X ) |
| 13 | 9 12 | imaeq12d | |- ( ( j = J /\ f = F ) -> ( f " U. j ) = ( F " X ) ) |
| 14 | 13 | pweqd | |- ( ( j = J /\ f = F ) -> ~P ( f " U. j ) = ~P ( F " X ) ) |
| 15 | 9 | cnveqd | |- ( ( j = J /\ f = F ) -> `' f = `' F ) |
| 16 | 15 | imaeq1d | |- ( ( j = J /\ f = F ) -> ( `' f " s ) = ( `' F " s ) ) |
| 17 | 16 12 | ineq12d | |- ( ( j = J /\ f = F ) -> ( ( `' f " s ) i^i U. j ) = ( ( `' F " s ) i^i X ) ) |
| 18 | 17 10 | eleq12d | |- ( ( j = J /\ f = F ) -> ( ( ( `' f " s ) i^i U. j ) e. j <-> ( ( `' F " s ) i^i X ) e. J ) ) |
| 19 | 14 18 | rabeqbidv | |- ( ( j = J /\ f = F ) -> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 20 | df-qtop | |- qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } ) |
|
| 21 | 19 20 | ovmpoga | |- ( ( J e. _V /\ F e. _V /\ { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 22 | 8 21 | mpd3an3 | |- ( ( J e. _V /\ F e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
| 23 | 2 3 22 | syl2an | |- ( ( J e. V /\ F e. W ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |