This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsinxp | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → ( 𝐴 / 𝑅 ) = ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecinxp | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] 𝑅 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 2 | 1 | eqeq2d | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = [ 𝑥 ] 𝑅 ↔ 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 3 | 2 | rexbidva | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 4 | 3 | abbidv | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) } ) |
| 5 | df-qs | ⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } | |
| 6 | df-qs | ⊢ ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) } | |
| 7 | 4 5 6 | 3eqtr4g | ⊢ ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 → ( 𝐴 / 𝑅 ) = ( 𝐴 / ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |