This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsinxp | |- ( ( R " A ) C_ A -> ( A /. R ) = ( A /. ( R i^i ( A X. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecinxp | |- ( ( ( R " A ) C_ A /\ x e. A ) -> [ x ] R = [ x ] ( R i^i ( A X. A ) ) ) |
|
| 2 | 1 | eqeq2d | |- ( ( ( R " A ) C_ A /\ x e. A ) -> ( y = [ x ] R <-> y = [ x ] ( R i^i ( A X. A ) ) ) ) |
| 3 | 2 | rexbidva | |- ( ( R " A ) C_ A -> ( E. x e. A y = [ x ] R <-> E. x e. A y = [ x ] ( R i^i ( A X. A ) ) ) ) |
| 4 | 3 | abbidv | |- ( ( R " A ) C_ A -> { y | E. x e. A y = [ x ] R } = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } ) |
| 5 | df-qs | |- ( A /. R ) = { y | E. x e. A y = [ x ] R } |
|
| 6 | df-qs | |- ( A /. ( R i^i ( A X. A ) ) ) = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( ( R " A ) C_ A -> ( A /. R ) = ( A /. ( R i^i ( A X. A ) ) ) ) |