This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecinxp | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 = [ 𝐵 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 2 | 1 | snssd | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝐵 } ⊆ 𝐴 ) |
| 3 | dfss2 | ⊢ ( { 𝐵 } ⊆ 𝐴 ↔ ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } ) | |
| 4 | 2 3 | sylib | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( { 𝐵 } ∩ 𝐴 ) = { 𝐵 } ) |
| 5 | 4 | imaeq2d | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ ( { 𝐵 } ∩ 𝐴 ) ) = ( 𝑅 “ { 𝐵 } ) ) |
| 6 | 5 | ineq1d | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑅 “ ( { 𝐵 } ∩ 𝐴 ) ) ∩ 𝐴 ) = ( ( 𝑅 “ { 𝐵 } ) ∩ 𝐴 ) ) |
| 7 | imass2 | ⊢ ( { 𝐵 } ⊆ 𝐴 → ( 𝑅 “ { 𝐵 } ) ⊆ ( 𝑅 “ 𝐴 ) ) | |
| 8 | 2 7 | syl | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ { 𝐵 } ) ⊆ ( 𝑅 “ 𝐴 ) ) |
| 9 | simpl | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ) | |
| 10 | 8 9 | sstrd | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ { 𝐵 } ) ⊆ 𝐴 ) |
| 11 | dfss2 | ⊢ ( ( 𝑅 “ { 𝐵 } ) ⊆ 𝐴 ↔ ( ( 𝑅 “ { 𝐵 } ) ∩ 𝐴 ) = ( 𝑅 “ { 𝐵 } ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝑅 “ { 𝐵 } ) ∩ 𝐴 ) = ( 𝑅 “ { 𝐵 } ) ) |
| 13 | 6 12 | eqtr2d | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ { 𝐵 } ) = ( ( 𝑅 “ ( { 𝐵 } ∩ 𝐴 ) ) ∩ 𝐴 ) ) |
| 14 | imainrect | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝐵 } ) = ( ( 𝑅 “ ( { 𝐵 } ∩ 𝐴 ) ) ∩ 𝐴 ) | |
| 15 | 13 14 | eqtr4di | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑅 “ { 𝐵 } ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝐵 } ) ) |
| 16 | df-ec | ⊢ [ 𝐵 ] 𝑅 = ( 𝑅 “ { 𝐵 } ) | |
| 17 | df-ec | ⊢ [ 𝐵 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝐵 } ) | |
| 18 | 15 16 17 | 3eqtr4g | ⊢ ( ( ( 𝑅 “ 𝐴 ) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 = [ 𝐵 ] ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |