This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qmuldeneqnum | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qeqnumdivden | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) · ( denom ‘ 𝐴 ) ) ) |
| 3 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
| 4 | 3 | zcnd | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 5 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 6 | 5 | nncnd | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 7 | 5 | nnne0d | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ≠ 0 ) |
| 8 | 4 6 7 | divcan1d | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |
| 9 | 2 8 | eqtrd | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |