This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpidtr | ⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 2 | brxp | ⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) | |
| 3 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) | |
| 4 | 3 | simplbi2com | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 5 | 2 4 | simplbiim | ⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → ( 𝑥 ∈ 𝐴 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 6 | 5 | com12 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
| 10 | 9 | ax-gen | ⊢ ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
| 11 | 10 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
| 12 | cotr | ⊢ ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) | |
| 13 | 11 12 | mpbir | ⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |