This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of qex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qexALT | ⊢ ℚ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝑥 ∈ ℚ ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) ) | |
| 2 | eqid | ⊢ ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) = ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) | |
| 3 | ovex | ⊢ ( 𝑦 / 𝑧 ) ∈ V | |
| 4 | 2 3 | elrnmpo | ⊢ ( 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( 𝑥 ∈ ℚ ↔ 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ) |
| 6 | 5 | eqriv | ⊢ ℚ = ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) |
| 7 | zexALT | ⊢ ℤ ∈ V | |
| 8 | nnexALT | ⊢ ℕ ∈ V | |
| 9 | 7 8 | mpoex | ⊢ ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V |
| 10 | 9 | rnex | ⊢ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V |
| 11 | 6 10 | eqeltri | ⊢ ℚ ∈ V |