This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of qex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qexALT | |- QQ e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( x e. QQ <-> E. y e. ZZ E. z e. NN x = ( y / z ) ) |
|
| 2 | eqid | |- ( y e. ZZ , z e. NN |-> ( y / z ) ) = ( y e. ZZ , z e. NN |-> ( y / z ) ) |
|
| 3 | ovex | |- ( y / z ) e. _V |
|
| 4 | 2 3 | elrnmpo | |- ( x e. ran ( y e. ZZ , z e. NN |-> ( y / z ) ) <-> E. y e. ZZ E. z e. NN x = ( y / z ) ) |
| 5 | 1 4 | bitr4i | |- ( x e. QQ <-> x e. ran ( y e. ZZ , z e. NN |-> ( y / z ) ) ) |
| 6 | 5 | eqriv | |- QQ = ran ( y e. ZZ , z e. NN |-> ( y / z ) ) |
| 7 | zexALT | |- ZZ e. _V |
|
| 8 | nnexALT | |- NN e. _V |
|
| 9 | 7 8 | mpoex | |- ( y e. ZZ , z e. NN |-> ( y / z ) ) e. _V |
| 10 | 9 | rnex | |- ran ( y e. ZZ , z e. NN |-> ( y / z ) ) e. _V |
| 11 | 6 10 | eqeltri | |- QQ e. _V |