This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every element of the power set of A is finite if and only if A is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwssfi | |- ( A e. V -> ( A e. Fin <-> ~P A C_ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
| 2 | ssfi | |- ( ( A e. Fin /\ x C_ A ) -> x e. Fin ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. Fin /\ x e. ~P A ) -> x e. Fin ) |
| 4 | 3 | ralrimiva | |- ( A e. Fin -> A. x e. ~P A x e. Fin ) |
| 5 | dfss3 | |- ( ~P A C_ Fin <-> A. x e. ~P A x e. Fin ) |
|
| 6 | 4 5 | sylibr | |- ( A e. Fin -> ~P A C_ Fin ) |
| 7 | pwidg | |- ( A e. V -> A e. ~P A ) |
|
| 8 | 5 | biimpi | |- ( ~P A C_ Fin -> A. x e. ~P A x e. Fin ) |
| 9 | eleq1 | |- ( x = A -> ( x e. Fin <-> A e. Fin ) ) |
|
| 10 | 9 | rspcva | |- ( ( A e. ~P A /\ A. x e. ~P A x e. Fin ) -> A e. Fin ) |
| 11 | 7 8 10 | syl2an | |- ( ( A e. V /\ ~P A C_ Fin ) -> A e. Fin ) |
| 12 | 11 | ex | |- ( A e. V -> ( ~P A C_ Fin -> A e. Fin ) ) |
| 13 | 6 12 | impbid2 | |- ( A e. V -> ( A e. Fin <-> ~P A C_ Fin ) ) |