This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the monoid of the power set of a class A under union is the empty set. (Contributed by AV, 27-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
||
| Assertion | pwmndid | |- ( 0g ` M ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwmnd.b | |- ( Base ` M ) = ~P A |
|
| 2 | pwmnd.p | |- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
|
| 3 | 0elpw | |- (/) e. ~P A |
|
| 4 | 1 | eqcomi | |- ~P A = ( Base ` M ) |
| 5 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 6 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 7 | id | |- ( (/) e. ~P A -> (/) e. ~P A ) |
|
| 8 | 1 2 | pwmndgplus | |- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = ( (/) u. z ) ) |
| 9 | 0un | |- ( (/) u. z ) = z |
|
| 10 | 8 9 | eqtrdi | |- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = z ) |
| 11 | 1 2 | pwmndgplus | |- ( ( z e. ~P A /\ (/) e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) |
| 12 | 11 | ancoms | |- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) |
| 13 | un0 | |- ( z u. (/) ) = z |
|
| 14 | 12 13 | eqtrdi | |- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = z ) |
| 15 | 4 5 6 7 10 14 | ismgmid2 | |- ( (/) e. ~P A -> (/) = ( 0g ` M ) ) |
| 16 | 15 | eqcomd | |- ( (/) e. ~P A -> ( 0g ` M ) = (/) ) |
| 17 | 3 16 | ax-mp | |- ( 0g ` M ) = (/) |