This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a mapped set under the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pw2f1o2.f | |- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
|
| Assertion | pw2f1o2val2 | |- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> ( X ` Y ) = 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | |- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
|
| 2 | 1 | pw2f1o2val | |- ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |
| 3 | 2 | eleq2d | |- ( X e. ( 2o ^m A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) |
| 4 | 3 | adantr | |- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) |
| 5 | elmapi | |- ( X e. ( 2o ^m A ) -> X : A --> 2o ) |
|
| 6 | ffn | |- ( X : A --> 2o -> X Fn A ) |
|
| 7 | fniniseg | |- ( X Fn A -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( X e. ( 2o ^m A ) -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) |
| 9 | 8 | baibd | |- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( `' X " { 1o } ) <-> ( X ` Y ) = 1o ) ) |
| 10 | 4 9 | bitrd | |- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> ( X ` Y ) = 1o ) ) |