This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsuc2 | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordunisuc2 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) |
| 3 | suceq | ⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |
| 5 | 4 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ 𝐴 ) |
| 6 | 2 5 | sylan | ⊢ ( ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ 𝐴 ) |
| 7 | 6 | ex | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴 ) ) |
| 8 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 9 | trsuc | ⊢ ( ( Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 10 | 9 | ex | ⊢ ( Tr 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 11 | 8 10 | syl | ⊢ ( Ord 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 13 | 7 12 | impbid | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |