This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of TakeutiZaring p. 96. (Contributed by Mario Carneiro, 6-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pw2f1o.1 | ||
| pw2f1o.2 | |||
| pw2f1o.3 | |||
| pw2f1o.4 | |||
| pw2f1o.5 | |||
| Assertion | pw2f1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.1 | ||
| 2 | pw2f1o.2 | ||
| 3 | pw2f1o.3 | ||
| 4 | pw2f1o.4 | ||
| 5 | pw2f1o.5 | ||
| 6 | eqid | ||
| 7 | 1 2 3 4 | pw2f1olem | |
| 8 | 7 | biimpa | |
| 9 | 6 8 | mpanr2 | |
| 10 | 9 | simpld | |
| 11 | vex | ||
| 12 | 11 | cnvex | |
| 13 | 12 | imaex | |
| 14 | 13 | a1i | |
| 15 | 1 2 3 4 | pw2f1olem | |
| 16 | 5 10 14 15 | f1od |