This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of TakeutiZaring p. 96. (Contributed by Mario Carneiro, 6-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pw2f1o.1 | |- ( ph -> A e. V ) |
|
| pw2f1o.2 | |- ( ph -> B e. W ) |
||
| pw2f1o.3 | |- ( ph -> C e. W ) |
||
| pw2f1o.4 | |- ( ph -> B =/= C ) |
||
| pw2f1o.5 | |- F = ( x e. ~P A |-> ( z e. A |-> if ( z e. x , C , B ) ) ) |
||
| Assertion | pw2f1o | |- ( ph -> F : ~P A -1-1-onto-> ( { B , C } ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.1 | |- ( ph -> A e. V ) |
|
| 2 | pw2f1o.2 | |- ( ph -> B e. W ) |
|
| 3 | pw2f1o.3 | |- ( ph -> C e. W ) |
|
| 4 | pw2f1o.4 | |- ( ph -> B =/= C ) |
|
| 5 | pw2f1o.5 | |- F = ( x e. ~P A |-> ( z e. A |-> if ( z e. x , C , B ) ) ) |
|
| 6 | eqid | |- ( z e. A |-> if ( z e. x , C , B ) ) = ( z e. A |-> if ( z e. x , C , B ) ) |
|
| 7 | 1 2 3 4 | pw2f1olem | |- ( ph -> ( ( x e. ~P A /\ ( z e. A |-> if ( z e. x , C , B ) ) = ( z e. A |-> if ( z e. x , C , B ) ) ) <-> ( ( z e. A |-> if ( z e. x , C , B ) ) e. ( { B , C } ^m A ) /\ x = ( `' ( z e. A |-> if ( z e. x , C , B ) ) " { C } ) ) ) ) |
| 8 | 7 | biimpa | |- ( ( ph /\ ( x e. ~P A /\ ( z e. A |-> if ( z e. x , C , B ) ) = ( z e. A |-> if ( z e. x , C , B ) ) ) ) -> ( ( z e. A |-> if ( z e. x , C , B ) ) e. ( { B , C } ^m A ) /\ x = ( `' ( z e. A |-> if ( z e. x , C , B ) ) " { C } ) ) ) |
| 9 | 6 8 | mpanr2 | |- ( ( ph /\ x e. ~P A ) -> ( ( z e. A |-> if ( z e. x , C , B ) ) e. ( { B , C } ^m A ) /\ x = ( `' ( z e. A |-> if ( z e. x , C , B ) ) " { C } ) ) ) |
| 10 | 9 | simpld | |- ( ( ph /\ x e. ~P A ) -> ( z e. A |-> if ( z e. x , C , B ) ) e. ( { B , C } ^m A ) ) |
| 11 | vex | |- y e. _V |
|
| 12 | 11 | cnvex | |- `' y e. _V |
| 13 | 12 | imaex | |- ( `' y " { C } ) e. _V |
| 14 | 13 | a1i | |- ( ( ph /\ y e. ( { B , C } ^m A ) ) -> ( `' y " { C } ) e. _V ) |
| 15 | 1 2 3 4 | pw2f1olem | |- ( ph -> ( ( x e. ~P A /\ y = ( z e. A |-> if ( z e. x , C , B ) ) ) <-> ( y e. ( { B , C } ^m A ) /\ x = ( `' y " { C } ) ) ) ) |
| 16 | 5 10 14 15 | f1od | |- ( ph -> F : ~P A -1-1-onto-> ( { B , C } ^m A ) ) |