This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptopn2.a | |- ( ph -> A e. V ) |
|
| ptopn2.f | |- ( ph -> F : A --> Top ) |
||
| ptopn2.o | |- ( ph -> O e. ( F ` Y ) ) |
||
| Assertion | ptopn2 | |- ( ph -> X_ k e. A if ( k = Y , O , U. ( F ` k ) ) e. ( Xt_ ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptopn2.a | |- ( ph -> A e. V ) |
|
| 2 | ptopn2.f | |- ( ph -> F : A --> Top ) |
|
| 3 | ptopn2.o | |- ( ph -> O e. ( F ` Y ) ) |
|
| 4 | snfi | |- { Y } e. Fin |
|
| 5 | 4 | a1i | |- ( ph -> { Y } e. Fin ) |
| 6 | 3 | adantr | |- ( ( ph /\ k e. A ) -> O e. ( F ` Y ) ) |
| 7 | fveq2 | |- ( k = Y -> ( F ` k ) = ( F ` Y ) ) |
|
| 8 | 7 | eleq2d | |- ( k = Y -> ( O e. ( F ` k ) <-> O e. ( F ` Y ) ) ) |
| 9 | 6 8 | syl5ibrcom | |- ( ( ph /\ k e. A ) -> ( k = Y -> O e. ( F ` k ) ) ) |
| 10 | 9 | imp | |- ( ( ( ph /\ k e. A ) /\ k = Y ) -> O e. ( F ` k ) ) |
| 11 | 2 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. Top ) |
| 12 | eqid | |- U. ( F ` k ) = U. ( F ` k ) |
|
| 13 | 12 | topopn | |- ( ( F ` k ) e. Top -> U. ( F ` k ) e. ( F ` k ) ) |
| 14 | 11 13 | syl | |- ( ( ph /\ k e. A ) -> U. ( F ` k ) e. ( F ` k ) ) |
| 15 | 14 | adantr | |- ( ( ( ph /\ k e. A ) /\ -. k = Y ) -> U. ( F ` k ) e. ( F ` k ) ) |
| 16 | 10 15 | ifclda | |- ( ( ph /\ k e. A ) -> if ( k = Y , O , U. ( F ` k ) ) e. ( F ` k ) ) |
| 17 | eldifn | |- ( k e. ( A \ { Y } ) -> -. k e. { Y } ) |
|
| 18 | velsn | |- ( k e. { Y } <-> k = Y ) |
|
| 19 | 17 18 | sylnib | |- ( k e. ( A \ { Y } ) -> -. k = Y ) |
| 20 | 19 | iffalsed | |- ( k e. ( A \ { Y } ) -> if ( k = Y , O , U. ( F ` k ) ) = U. ( F ` k ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ k e. ( A \ { Y } ) ) -> if ( k = Y , O , U. ( F ` k ) ) = U. ( F ` k ) ) |
| 22 | 1 2 5 16 21 | ptopn | |- ( ph -> X_ k e. A if ( k = Y , O , U. ( F ` k ) ) e. ( Xt_ ` F ) ) |