This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcldmpt.a | |- ( ph -> A e. V ) |
|
| ptcldmpt.j | |- ( ( ph /\ k e. A ) -> J e. Top ) |
||
| ptcldmpt.c | |- ( ( ph /\ k e. A ) -> C e. ( Clsd ` J ) ) |
||
| Assertion | ptcldmpt | |- ( ph -> X_ k e. A C e. ( Clsd ` ( Xt_ ` ( k e. A |-> J ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcldmpt.a | |- ( ph -> A e. V ) |
|
| 2 | ptcldmpt.j | |- ( ( ph /\ k e. A ) -> J e. Top ) |
|
| 3 | ptcldmpt.c | |- ( ( ph /\ k e. A ) -> C e. ( Clsd ` J ) ) |
|
| 4 | nfcv | |- F/_ l C |
|
| 5 | nfcsb1v | |- F/_ k [_ l / k ]_ C |
|
| 6 | csbeq1a | |- ( k = l -> C = [_ l / k ]_ C ) |
|
| 7 | 4 5 6 | cbvixp | |- X_ k e. A C = X_ l e. A [_ l / k ]_ C |
| 8 | 2 | fmpttd | |- ( ph -> ( k e. A |-> J ) : A --> Top ) |
| 9 | nfv | |- F/ k ( ph /\ l e. A ) |
|
| 10 | nfcv | |- F/_ k Clsd |
|
| 11 | nffvmpt1 | |- F/_ k ( ( k e. A |-> J ) ` l ) |
|
| 12 | 10 11 | nffv | |- F/_ k ( Clsd ` ( ( k e. A |-> J ) ` l ) ) |
| 13 | 5 12 | nfel | |- F/ k [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) |
| 14 | 9 13 | nfim | |- F/ k ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) |
| 15 | eleq1w | |- ( k = l -> ( k e. A <-> l e. A ) ) |
|
| 16 | 15 | anbi2d | |- ( k = l -> ( ( ph /\ k e. A ) <-> ( ph /\ l e. A ) ) ) |
| 17 | 2fveq3 | |- ( k = l -> ( Clsd ` ( ( k e. A |-> J ) ` k ) ) = ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) |
|
| 18 | 6 17 | eleq12d | |- ( k = l -> ( C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) <-> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) ) |
| 19 | 16 18 | imbi12d | |- ( k = l -> ( ( ( ph /\ k e. A ) -> C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) ) <-> ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) ) ) |
| 20 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 21 | eqid | |- ( k e. A |-> J ) = ( k e. A |-> J ) |
|
| 22 | 21 | fvmpt2 | |- ( ( k e. A /\ J e. Top ) -> ( ( k e. A |-> J ) ` k ) = J ) |
| 23 | 20 2 22 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> J ) ` k ) = J ) |
| 24 | 23 | fveq2d | |- ( ( ph /\ k e. A ) -> ( Clsd ` ( ( k e. A |-> J ) ` k ) ) = ( Clsd ` J ) ) |
| 25 | 3 24 | eleqtrrd | |- ( ( ph /\ k e. A ) -> C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) ) |
| 26 | 14 19 25 | chvarfv | |- ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) |
| 27 | 1 8 26 | ptcld | |- ( ph -> X_ l e. A [_ l / k ]_ C e. ( Clsd ` ( Xt_ ` ( k e. A |-> J ) ) ) ) |
| 28 | 7 27 | eqeltrid | |- ( ph -> X_ k e. A C e. ( Clsd ` ( Xt_ ` ( k e. A |-> J ) ) ) ) |