This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psssdm.1 | |- X = dom R |
|
| Assertion | psssdm2 | |- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) = ( X i^i A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psssdm.1 | |- X = dom R |
|
| 2 | dmin | |- dom ( R i^i ( A X. A ) ) C_ ( dom R i^i dom ( A X. A ) ) |
|
| 3 | 1 | eqcomi | |- dom R = X |
| 4 | dmxpid | |- dom ( A X. A ) = A |
|
| 5 | 3 4 | ineq12i | |- ( dom R i^i dom ( A X. A ) ) = ( X i^i A ) |
| 6 | 2 5 | sseqtri | |- dom ( R i^i ( A X. A ) ) C_ ( X i^i A ) |
| 7 | 6 | a1i | |- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) C_ ( X i^i A ) ) |
| 8 | simpr | |- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. ( X i^i A ) ) |
|
| 9 | 8 | elin2d | |- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. A ) |
| 10 | elinel1 | |- ( x e. ( X i^i A ) -> x e. X ) |
|
| 11 | 1 | psref | |- ( ( R e. PosetRel /\ x e. X ) -> x R x ) |
| 12 | 10 11 | sylan2 | |- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x R x ) |
| 13 | brinxp2 | |- ( x ( R i^i ( A X. A ) ) x <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
|
| 14 | 9 9 12 13 | syl21anbrc | |- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x ( R i^i ( A X. A ) ) x ) |
| 15 | vex | |- x e. _V |
|
| 16 | 15 15 | breldm | |- ( x ( R i^i ( A X. A ) ) x -> x e. dom ( R i^i ( A X. A ) ) ) |
| 17 | 14 16 | syl | |- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. dom ( R i^i ( A X. A ) ) ) |
| 18 | 7 17 | eqelssd | |- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) = ( X i^i A ) ) |