This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for class difference. Exercise 4.8 of Stoll p. 16. (Contributed by NM, 18-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difdifdir | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif32 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) | |
| 2 | invdif | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ 𝐵 ) | |
| 3 | 1 2 | eqtr4i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) |
| 4 | un0 | ⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) | |
| 5 | 3 4 | eqtr4i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
| 6 | indi | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) | |
| 7 | disjdif | ⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ | |
| 8 | incom | ⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) | |
| 9 | 7 8 | eqtr3i | ⊢ ∅ = ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) |
| 10 | 9 | uneq2i | ⊢ ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ( ( 𝐴 ∖ 𝐶 ) ∩ 𝐶 ) ) |
| 11 | 6 10 | eqtr4i | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ 𝐵 ) ) ∪ ∅ ) |
| 12 | 5 11 | eqtr4i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) |
| 13 | ddif | ⊢ ( V ∖ ( V ∖ 𝐶 ) ) = 𝐶 | |
| 14 | 13 | uneq2i | ⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ 𝐶 ) |
| 15 | indm | ⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) | |
| 16 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
| 17 | 16 | difeq2i | ⊢ ( V ∖ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 18 | 15 17 | eqtr3i | ⊢ ( ( V ∖ 𝐵 ) ∪ ( V ∖ ( V ∖ 𝐶 ) ) ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 19 | 14 18 | eqtr3i | ⊢ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) = ( V ∖ ( 𝐵 ∖ 𝐶 ) ) |
| 20 | 19 | ineq2i | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) |
| 21 | invdif | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∩ ( V ∖ ( 𝐵 ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) | |
| 22 | 12 20 21 | 3eqtri | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∖ ( 𝐵 ∖ 𝐶 ) ) |