This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdifcom2 | |- ( ( A C_ C /\ B C_ C ) -> ( B C. ( C \ A ) <-> A C. ( C \ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssconb | |- ( ( B C_ C /\ A C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A C_ C /\ B C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
| 3 | difcom | |- ( ( C \ A ) C_ B <-> ( C \ B ) C_ A ) |
|
| 4 | 3 | notbii | |- ( -. ( C \ A ) C_ B <-> -. ( C \ B ) C_ A ) |
| 5 | 4 | a1i | |- ( ( A C_ C /\ B C_ C ) -> ( -. ( C \ A ) C_ B <-> -. ( C \ B ) C_ A ) ) |
| 6 | 2 5 | anbi12d | |- ( ( A C_ C /\ B C_ C ) -> ( ( B C_ ( C \ A ) /\ -. ( C \ A ) C_ B ) <-> ( A C_ ( C \ B ) /\ -. ( C \ B ) C_ A ) ) ) |
| 7 | dfpss3 | |- ( B C. ( C \ A ) <-> ( B C_ ( C \ A ) /\ -. ( C \ A ) C_ B ) ) |
|
| 8 | dfpss3 | |- ( A C. ( C \ B ) <-> ( A C_ ( C \ B ) /\ -. ( C \ B ) C_ A ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( B C. ( C \ A ) <-> A C. ( C \ B ) ) ) |