This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebra of power series over the index set i and with coefficients from the ring r . (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psr | ⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmps | ⊢ mPwSer | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | vh | ⊢ ℎ | |
| 5 | cn0 | ⊢ ℕ0 | |
| 6 | cmap | ⊢ ↑m | |
| 7 | 1 | cv | ⊢ 𝑖 |
| 8 | 5 7 6 | co | ⊢ ( ℕ0 ↑m 𝑖 ) |
| 9 | 4 | cv | ⊢ ℎ |
| 10 | 9 | ccnv | ⊢ ◡ ℎ |
| 11 | cn | ⊢ ℕ | |
| 12 | 10 11 | cima | ⊢ ( ◡ ℎ “ ℕ ) |
| 13 | cfn | ⊢ Fin | |
| 14 | 12 13 | wcel | ⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 15 | 14 4 8 | crab | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 16 | vd | ⊢ 𝑑 | |
| 17 | cbs | ⊢ Base | |
| 18 | 3 | cv | ⊢ 𝑟 |
| 19 | 18 17 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 20 | 16 | cv | ⊢ 𝑑 |
| 21 | 19 20 6 | co | ⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) |
| 22 | vb | ⊢ 𝑏 | |
| 23 | cnx | ⊢ ndx | |
| 24 | 23 17 | cfv | ⊢ ( Base ‘ ndx ) |
| 25 | 22 | cv | ⊢ 𝑏 |
| 26 | 24 25 | cop | ⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 27 | cplusg | ⊢ +g | |
| 28 | 23 27 | cfv | ⊢ ( +g ‘ ndx ) |
| 29 | 18 27 | cfv | ⊢ ( +g ‘ 𝑟 ) |
| 30 | 29 | cof | ⊢ ∘f ( +g ‘ 𝑟 ) |
| 31 | 25 25 | cxp | ⊢ ( 𝑏 × 𝑏 ) |
| 32 | 30 31 | cres | ⊢ ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) |
| 33 | 28 32 | cop | ⊢ 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 |
| 34 | cmulr | ⊢ .r | |
| 35 | 23 34 | cfv | ⊢ ( .r ‘ ndx ) |
| 36 | vf | ⊢ 𝑓 | |
| 37 | vg | ⊢ 𝑔 | |
| 38 | vk | ⊢ 𝑘 | |
| 39 | cgsu | ⊢ Σg | |
| 40 | vx | ⊢ 𝑥 | |
| 41 | vy | ⊢ 𝑦 | |
| 42 | 41 | cv | ⊢ 𝑦 |
| 43 | cle | ⊢ ≤ | |
| 44 | 43 | cofr | ⊢ ∘r ≤ |
| 45 | 38 | cv | ⊢ 𝑘 |
| 46 | 42 45 44 | wbr | ⊢ 𝑦 ∘r ≤ 𝑘 |
| 47 | 46 41 20 | crab | ⊢ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 48 | 36 | cv | ⊢ 𝑓 |
| 49 | 40 | cv | ⊢ 𝑥 |
| 50 | 49 48 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 51 | 18 34 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 52 | 37 | cv | ⊢ 𝑔 |
| 53 | cmin | ⊢ − | |
| 54 | 53 | cof | ⊢ ∘f − |
| 55 | 45 49 54 | co | ⊢ ( 𝑘 ∘f − 𝑥 ) |
| 56 | 55 52 | cfv | ⊢ ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) |
| 57 | 50 56 51 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
| 58 | 40 47 57 | cmpt | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 59 | 18 58 39 | co | ⊢ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 60 | 38 20 59 | cmpt | ⊢ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 61 | 36 37 25 25 60 | cmpo | ⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 62 | 35 61 | cop | ⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 |
| 63 | 26 33 62 | ctp | ⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } |
| 64 | csca | ⊢ Scalar | |
| 65 | 23 64 | cfv | ⊢ ( Scalar ‘ ndx ) |
| 66 | 65 18 | cop | ⊢ 〈 ( Scalar ‘ ndx ) , 𝑟 〉 |
| 67 | cvsca | ⊢ ·𝑠 | |
| 68 | 23 67 | cfv | ⊢ ( ·𝑠 ‘ ndx ) |
| 69 | 49 | csn | ⊢ { 𝑥 } |
| 70 | 20 69 | cxp | ⊢ ( 𝑑 × { 𝑥 } ) |
| 71 | 51 | cof | ⊢ ∘f ( .r ‘ 𝑟 ) |
| 72 | 70 48 71 | co | ⊢ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) |
| 73 | 40 36 19 25 72 | cmpo | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) |
| 74 | 68 73 | cop | ⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 |
| 75 | cts | ⊢ TopSet | |
| 76 | 23 75 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 77 | cpt | ⊢ ∏t | |
| 78 | ctopn | ⊢ TopOpen | |
| 79 | 18 78 | cfv | ⊢ ( TopOpen ‘ 𝑟 ) |
| 80 | 79 | csn | ⊢ { ( TopOpen ‘ 𝑟 ) } |
| 81 | 20 80 | cxp | ⊢ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) |
| 82 | 81 77 | cfv | ⊢ ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) |
| 83 | 76 82 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 |
| 84 | 66 74 83 | ctp | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } |
| 85 | 63 84 | cun | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 86 | 22 21 85 | csb | ⊢ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 87 | 16 15 86 | csb | ⊢ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 88 | 1 3 2 2 87 | cmpo | ⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
| 89 | 0 88 | wceq | ⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |