This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulr.s | |- S = ( I mPwSer R ) |
|
| psrmulr.b | |- B = ( Base ` S ) |
||
| psrmulr.m | |- .x. = ( .r ` R ) |
||
| psrmulr.t | |- .xb = ( .r ` S ) |
||
| psrmulr.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| psrmulfval.i | |- ( ph -> F e. B ) |
||
| psrmulfval.r | |- ( ph -> G e. B ) |
||
| psrmulval.r | |- ( ph -> X e. D ) |
||
| Assertion | psrmulval | |- ( ph -> ( ( F .xb G ) ` X ) = ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulr.s | |- S = ( I mPwSer R ) |
|
| 2 | psrmulr.b | |- B = ( Base ` S ) |
|
| 3 | psrmulr.m | |- .x. = ( .r ` R ) |
|
| 4 | psrmulr.t | |- .xb = ( .r ` S ) |
|
| 5 | psrmulr.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 6 | psrmulfval.i | |- ( ph -> F e. B ) |
|
| 7 | psrmulfval.r | |- ( ph -> G e. B ) |
|
| 8 | psrmulval.r | |- ( ph -> X e. D ) |
|
| 9 | 1 2 3 4 5 6 7 | psrmulfval | |- ( ph -> ( F .xb G ) = ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) ) |
| 10 | 9 | fveq1d | |- ( ph -> ( ( F .xb G ) ` X ) = ( ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) ` X ) ) |
| 11 | breq2 | |- ( x = X -> ( y oR <_ x <-> y oR <_ X ) ) |
|
| 12 | 11 | rabbidv | |- ( x = X -> { y e. D | y oR <_ x } = { y e. D | y oR <_ X } ) |
| 13 | fvoveq1 | |- ( x = X -> ( G ` ( x oF - k ) ) = ( G ` ( X oF - k ) ) ) |
|
| 14 | 13 | oveq2d | |- ( x = X -> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) = ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) |
| 15 | 12 14 | mpteq12dv | |- ( x = X -> ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) = ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) |
| 16 | 15 | oveq2d | |- ( x = X -> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) = ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) ) |
| 17 | eqid | |- ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) = ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) |
|
| 18 | ovex | |- ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) e. _V |
|
| 19 | 16 17 18 | fvmpt | |- ( X e. D -> ( ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) ` X ) = ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) ) |
| 20 | 8 19 | syl | |- ( ph -> ( ( x e. D |-> ( R gsum ( k e. { y e. D | y oR <_ x } |-> ( ( F ` k ) .x. ( G ` ( x oF - k ) ) ) ) ) ) ` X ) = ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) ) |
| 21 | 10 20 | eqtrd | |- ( ph -> ( ( F .xb G ) ` X ) = ( R gsum ( k e. { y e. D | y oR <_ X } |-> ( ( F ` k ) .x. ( G ` ( X oF - k ) ) ) ) ) ) |