This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmet0 | |- ( ( D e. ( PsMet ` X ) /\ A e. X ) -> ( A D A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( D e. ( PsMet ` X ) -> X e. _V ) |
|
| 2 | ispsmet | |- ( X e. _V -> ( D e. ( PsMet ` X ) <-> ( D : ( X X. X ) --> RR* /\ A. a e. X ( ( a D a ) = 0 /\ A. b e. X A. c e. X ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( D e. ( PsMet ` X ) -> ( D e. ( PsMet ` X ) <-> ( D : ( X X. X ) --> RR* /\ A. a e. X ( ( a D a ) = 0 /\ A. b e. X A. c e. X ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) ) ) ) |
| 4 | 3 | ibi | |- ( D e. ( PsMet ` X ) -> ( D : ( X X. X ) --> RR* /\ A. a e. X ( ( a D a ) = 0 /\ A. b e. X A. c e. X ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) ) ) |
| 5 | 4 | simprd | |- ( D e. ( PsMet ` X ) -> A. a e. X ( ( a D a ) = 0 /\ A. b e. X A. c e. X ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) ) |
| 6 | 5 | r19.21bi | |- ( ( D e. ( PsMet ` X ) /\ a e. X ) -> ( ( a D a ) = 0 /\ A. b e. X A. c e. X ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) ) |
| 7 | 6 | simpld | |- ( ( D e. ( PsMet ` X ) /\ a e. X ) -> ( a D a ) = 0 ) |
| 8 | 7 | ralrimiva | |- ( D e. ( PsMet ` X ) -> A. a e. X ( a D a ) = 0 ) |
| 9 | id | |- ( a = A -> a = A ) |
|
| 10 | 9 9 | oveq12d | |- ( a = A -> ( a D a ) = ( A D A ) ) |
| 11 | 10 | eqeq1d | |- ( a = A -> ( ( a D a ) = 0 <-> ( A D A ) = 0 ) ) |
| 12 | 11 | rspcv | |- ( A e. X -> ( A. a e. X ( a D a ) = 0 -> ( A D A ) = 0 ) ) |
| 13 | 8 12 | mpan9 | |- ( ( D e. ( PsMet ` X ) /\ A e. X ) -> ( A D A ) = 0 ) |