This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmettri2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | ispsmet | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 6 | 5 | r19.21bi | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑎 ) = 0 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
| 9 | oveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐷 𝑏 ) = ( 𝐴 𝐷 𝑏 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑐 𝐷 𝑎 ) = ( 𝑐 𝐷 𝐴 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) = ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ↔ ( 𝐴 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝐴 𝐷 𝑏 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑐 𝐷 𝑏 ) = ( 𝑐 𝐷 𝐵 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) = ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ) |
| 16 | 13 15 | breq12d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐷 𝐴 ) = ( 𝐶 𝐷 𝐴 ) ) | |
| 18 | oveq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 𝐷 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) | |
| 19 | 17 18 | oveq12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
| 20 | 19 | breq2d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝑐 𝐷 𝐴 ) +𝑒 ( 𝑐 𝐷 𝐵 ) ) ↔ ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 21 | 12 16 20 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 22 | 21 | 3comr | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 23 | 8 22 | mpan9 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |