This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function which takes the value 1 for even permutations and -u 1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psgn | ⊢ pmSgn = ( 𝑑 ∈ V ↦ ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpsgn | ⊢ pmSgn | |
| 1 | vd | ⊢ 𝑑 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vp | ⊢ 𝑝 | |
| 5 | cbs | ⊢ Base | |
| 6 | csymg | ⊢ SymGrp | |
| 7 | 1 | cv | ⊢ 𝑑 |
| 8 | 7 6 | cfv | ⊢ ( SymGrp ‘ 𝑑 ) |
| 9 | 8 5 | cfv | ⊢ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) |
| 10 | 4 | cv | ⊢ 𝑝 |
| 11 | cid | ⊢ I | |
| 12 | 10 11 | cdif | ⊢ ( 𝑝 ∖ I ) |
| 13 | 12 | cdm | ⊢ dom ( 𝑝 ∖ I ) |
| 14 | cfn | ⊢ Fin | |
| 15 | 13 14 | wcel | ⊢ dom ( 𝑝 ∖ I ) ∈ Fin |
| 16 | 15 4 9 | crab | ⊢ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
| 17 | vs | ⊢ 𝑠 | |
| 18 | vw | ⊢ 𝑤 | |
| 19 | cpmtr | ⊢ pmTrsp | |
| 20 | 7 19 | cfv | ⊢ ( pmTrsp ‘ 𝑑 ) |
| 21 | 20 | crn | ⊢ ran ( pmTrsp ‘ 𝑑 ) |
| 22 | 21 | cword | ⊢ Word ran ( pmTrsp ‘ 𝑑 ) |
| 23 | 3 | cv | ⊢ 𝑥 |
| 24 | cgsu | ⊢ Σg | |
| 25 | 18 | cv | ⊢ 𝑤 |
| 26 | 8 25 24 | co | ⊢ ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) |
| 27 | 23 26 | wceq | ⊢ 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) |
| 28 | 17 | cv | ⊢ 𝑠 |
| 29 | c1 | ⊢ 1 | |
| 30 | 29 | cneg | ⊢ - 1 |
| 31 | cexp | ⊢ ↑ | |
| 32 | chash | ⊢ ♯ | |
| 33 | 25 32 | cfv | ⊢ ( ♯ ‘ 𝑤 ) |
| 34 | 30 33 31 | co | ⊢ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) |
| 35 | 28 34 | wceq | ⊢ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) |
| 36 | 27 35 | wa | ⊢ ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 37 | 36 18 22 | wrex | ⊢ ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 38 | 37 17 | cio | ⊢ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 39 | 3 16 38 | cmpt | ⊢ ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 40 | 1 2 39 | cmpt | ⊢ ( 𝑑 ∈ V ↦ ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 41 | 0 40 | wceq | ⊢ pmSgn = ( 𝑑 ∈ V ↦ ( 𝑥 ∈ { 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑑 ) ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ 𝑑 ) ( 𝑥 = ( ( SymGrp ‘ 𝑑 ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |