This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem10 | ⊢ ( ∼ Er 𝐴 → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 2 | simpl | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ∼ Er 𝐴 ) | |
| 3 | 2 1 | erref | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∼ 𝑧 ) |
| 4 | breq1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∼ 𝑧 ↔ 𝑧 ∼ 𝑧 ) ) | |
| 5 | breq1 | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∼ 𝑤 ↔ 𝑧 ∼ 𝑤 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( 𝑣 = 𝑧 → ( ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ↔ ( 𝑧 ∼ 𝑧 ∧ 𝑧 ∼ 𝑤 ) ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∼ 𝑧 ∧ 𝑧 ∼ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 8 | 7 | expr | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∼ 𝑧 ) → ( 𝑧 ∼ 𝑤 → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 9 | 1 3 8 | syl2anc | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 → ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 10 | simplll | ⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → ∼ Er 𝐴 ) | |
| 11 | simprl | ⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑧 ) | |
| 12 | simprr | ⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑣 ∼ 𝑤 ) | |
| 13 | 10 11 12 | ertr3d | ⊢ ( ( ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) → 𝑧 ∼ 𝑤 ) |
| 14 | 13 | rexlimdva2 | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) → 𝑧 ∼ 𝑤 ) ) |
| 15 | 9 14 | impbid | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | vex | ⊢ 𝑣 ∈ V | |
| 18 | 16 17 | elec | ⊢ ( 𝑧 ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ 𝑧 ) |
| 19 | vex | ⊢ 𝑤 ∈ V | |
| 20 | 19 17 | elec | ⊢ ( 𝑤 ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ 𝑤 ) |
| 21 | 18 20 | anbi12i | ⊢ ( ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ↔ ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 22 | 21 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑣 ∼ 𝑧 ∧ 𝑣 ∼ 𝑤 ) ) |
| 23 | 15 22 | bitr4di | ⊢ ( ( ∼ Er 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ) ) |
| 24 | 23 | ex | ⊢ ( ∼ Er 𝐴 → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ [ 𝑣 ] ∼ ∧ 𝑤 ∈ [ 𝑣 ] ∼ ) ) ) ) |