This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem10 | |- ( .~ Er A -> ( z e. A -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( .~ Er A /\ z e. A ) -> z e. A ) |
|
| 2 | simpl | |- ( ( .~ Er A /\ z e. A ) -> .~ Er A ) |
|
| 3 | 2 1 | erref | |- ( ( .~ Er A /\ z e. A ) -> z .~ z ) |
| 4 | breq1 | |- ( v = z -> ( v .~ z <-> z .~ z ) ) |
|
| 5 | breq1 | |- ( v = z -> ( v .~ w <-> z .~ w ) ) |
|
| 6 | 4 5 | anbi12d | |- ( v = z -> ( ( v .~ z /\ v .~ w ) <-> ( z .~ z /\ z .~ w ) ) ) |
| 7 | 6 | rspcev | |- ( ( z e. A /\ ( z .~ z /\ z .~ w ) ) -> E. v e. A ( v .~ z /\ v .~ w ) ) |
| 8 | 7 | expr | |- ( ( z e. A /\ z .~ z ) -> ( z .~ w -> E. v e. A ( v .~ z /\ v .~ w ) ) ) |
| 9 | 1 3 8 | syl2anc | |- ( ( .~ Er A /\ z e. A ) -> ( z .~ w -> E. v e. A ( v .~ z /\ v .~ w ) ) ) |
| 10 | simplll | |- ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> .~ Er A ) |
|
| 11 | simprl | |- ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> v .~ z ) |
|
| 12 | simprr | |- ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> v .~ w ) |
|
| 13 | 10 11 12 | ertr3d | |- ( ( ( ( .~ Er A /\ z e. A ) /\ v e. A ) /\ ( v .~ z /\ v .~ w ) ) -> z .~ w ) |
| 14 | 13 | rexlimdva2 | |- ( ( .~ Er A /\ z e. A ) -> ( E. v e. A ( v .~ z /\ v .~ w ) -> z .~ w ) ) |
| 15 | 9 14 | impbid | |- ( ( .~ Er A /\ z e. A ) -> ( z .~ w <-> E. v e. A ( v .~ z /\ v .~ w ) ) ) |
| 16 | vex | |- z e. _V |
|
| 17 | vex | |- v e. _V |
|
| 18 | 16 17 | elec | |- ( z e. [ v ] .~ <-> v .~ z ) |
| 19 | vex | |- w e. _V |
|
| 20 | 19 17 | elec | |- ( w e. [ v ] .~ <-> v .~ w ) |
| 21 | 18 20 | anbi12i | |- ( ( z e. [ v ] .~ /\ w e. [ v ] .~ ) <-> ( v .~ z /\ v .~ w ) ) |
| 22 | 21 | rexbii | |- ( E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) <-> E. v e. A ( v .~ z /\ v .~ w ) ) |
| 23 | 15 22 | bitr4di | |- ( ( .~ Er A /\ z e. A ) -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) ) |
| 24 | 23 | ex | |- ( .~ Er A -> ( z e. A -> ( z .~ w <-> E. v e. A ( z e. [ v ] .~ /\ w e. [ v ] .~ ) ) ) ) |