This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prstcnid and prstchomval . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| prstcnid.e | |- E = Slot ( E ` ndx ) |
||
| prstcnid.no | |- ( E ` ndx ) =/= ( comp ` ndx ) |
||
| Assertion | prstcnidlem | |- ( ph -> ( E ` C ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | prstcnid.e | |- E = Slot ( E ` ndx ) |
|
| 4 | prstcnid.no | |- ( E ` ndx ) =/= ( comp ` ndx ) |
|
| 5 | 1 2 | prstcval | |- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 6 | 5 | fveq2d | |- ( ph -> ( E ` C ) = ( E ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) ) |
| 7 | 3 4 | setsnid | |- ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) = ( E ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 8 | 6 7 | eqtr4di | |- ( ph -> ( E ` C ) = ( E ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |