This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnebg | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prneimg | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |
| 3 | ioran | ⊢ ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) | |
| 4 | ianor | ⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ) | |
| 5 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐶 ↔ 𝐴 = 𝐶 ) | |
| 6 | nne | ⊢ ( ¬ 𝐴 ≠ 𝐷 ↔ 𝐴 = 𝐷 ) | |
| 7 | 5 6 | orbi12i | ⊢ ( ( ¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 8 | 4 7 | bitri | ⊢ ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 9 | ianor | ⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ) | |
| 10 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) | |
| 11 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐷 ↔ 𝐵 = 𝐷 ) | |
| 12 | 10 11 | orbi12i | ⊢ ( ( ¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
| 13 | 9 12 | bitri | ⊢ ( ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) |
| 14 | 8 13 | anbi12i | ⊢ ( ( ¬ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ¬ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 15 | 3 14 | bitri | ⊢ ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) |
| 16 | anddi | ⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ↔ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) ) | |
| 17 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
| 18 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 20 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 21 | 20 | a1d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 22 | 19 21 | jaoi | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 23 | preq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) | |
| 24 | prcom | ⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } | |
| 25 | 23 24 | eqtrdi | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 26 | 25 | a1d | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 27 | eqtr3 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) | |
| 28 | 27 18 | syl | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 29 | 26 28 | jaoi | ⊢ ( ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 30 | 22 29 | jaoi | ⊢ ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 31 | 30 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 32 | 31 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ∨ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 33 | 16 32 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 34 | 15 33 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ¬ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 35 | 34 | necon1ad | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } → ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ) ) |
| 36 | 2 35 | impbid | ⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∨ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ) ↔ { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) ) |