This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnebg | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> { A , B } =/= { C , D } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prneimg | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |
| 3 | ioran | |- ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) |
|
| 4 | ianor | |- ( -. ( A =/= C /\ A =/= D ) <-> ( -. A =/= C \/ -. A =/= D ) ) |
|
| 5 | nne | |- ( -. A =/= C <-> A = C ) |
|
| 6 | nne | |- ( -. A =/= D <-> A = D ) |
|
| 7 | 5 6 | orbi12i | |- ( ( -. A =/= C \/ -. A =/= D ) <-> ( A = C \/ A = D ) ) |
| 8 | 4 7 | bitri | |- ( -. ( A =/= C /\ A =/= D ) <-> ( A = C \/ A = D ) ) |
| 9 | ianor | |- ( -. ( B =/= C /\ B =/= D ) <-> ( -. B =/= C \/ -. B =/= D ) ) |
|
| 10 | nne | |- ( -. B =/= C <-> B = C ) |
|
| 11 | nne | |- ( -. B =/= D <-> B = D ) |
|
| 12 | 10 11 | orbi12i | |- ( ( -. B =/= C \/ -. B =/= D ) <-> ( B = C \/ B = D ) ) |
| 13 | 9 12 | bitri | |- ( -. ( B =/= C /\ B =/= D ) <-> ( B = C \/ B = D ) ) |
| 14 | 8 13 | anbi12i | |- ( ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
| 15 | 3 14 | bitri | |- ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
| 16 | anddi | |- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) <-> ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) ) |
|
| 17 | eqtr3 | |- ( ( A = C /\ B = C ) -> A = B ) |
|
| 18 | eqneqall | |- ( A = B -> ( A =/= B -> { A , B } = { C , D } ) ) |
|
| 19 | 17 18 | syl | |- ( ( A = C /\ B = C ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 20 | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
|
| 21 | 20 | a1d | |- ( ( A = C /\ B = D ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 22 | 19 21 | jaoi | |- ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 23 | preq12 | |- ( ( A = D /\ B = C ) -> { A , B } = { D , C } ) |
|
| 24 | prcom | |- { D , C } = { C , D } |
|
| 25 | 23 24 | eqtrdi | |- ( ( A = D /\ B = C ) -> { A , B } = { C , D } ) |
| 26 | 25 | a1d | |- ( ( A = D /\ B = C ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 27 | eqtr3 | |- ( ( A = D /\ B = D ) -> A = B ) |
|
| 28 | 27 18 | syl | |- ( ( A = D /\ B = D ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 29 | 26 28 | jaoi | |- ( ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 30 | 22 29 | jaoi | |- ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> ( A =/= B -> { A , B } = { C , D } ) ) |
| 31 | 30 | com12 | |- ( A =/= B -> ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> { A , B } = { C , D } ) ) |
| 32 | 31 | 3ad2ant3 | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = D ) ) \/ ( ( A = D /\ B = C ) \/ ( A = D /\ B = D ) ) ) -> { A , B } = { C , D } ) ) |
| 33 | 16 32 | biimtrid | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> { A , B } = { C , D } ) ) |
| 34 | 15 33 | biimtrid | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } = { C , D } ) ) |
| 35 | 34 | necon1ad | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( { A , B } =/= { C , D } -> ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) ) |
| 36 | 2 35 | impbid | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) <-> { A , B } =/= { C , D } ) ) |