This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A is a prime number (or 1)". See also isprm . (Contributed by NM, 4-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prime | ⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℕ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 | ⊢ ( ( 𝑥 ≠ 1 → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 = 𝐴 ) ) ↔ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) ) | |
| 2 | impexp | ⊢ ( ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 1 → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 = 𝐴 ) ) ) | |
| 3 | neor | ⊢ ( ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ↔ ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) | |
| 4 | 3 | imbi2i | ⊢ ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 ≠ 1 → 𝑥 = 𝐴 ) ) ) |
| 5 | 1 2 4 | 3bitr4ri | ⊢ ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) |
| 6 | nngt1ne1 | ⊢ ( 𝑥 ∈ ℕ → ( 1 < 𝑥 ↔ 𝑥 ≠ 1 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( 1 < 𝑥 ↔ 𝑥 ≠ 1 ) ) |
| 8 | 7 | anbi1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
| 9 | nnz | ⊢ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝐴 / 𝑥 ) ∈ ℤ ) | |
| 10 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 11 | gtndiv | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥 ) → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) | |
| 12 | 11 | 3expia | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < 𝑥 → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) ) |
| 13 | 10 12 | sylan | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < 𝑥 → ¬ ( 𝐴 / 𝑥 ) ∈ ℤ ) ) |
| 14 | 13 | con2d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → ¬ 𝐴 < 𝑥 ) ) |
| 15 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 16 | lenlt | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) | |
| 17 | 10 15 16 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
| 18 | 14 17 | sylibrd | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → 𝑥 ≤ 𝐴 ) ) |
| 19 | 18 | ancoms | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℤ → 𝑥 ≤ 𝐴 ) ) |
| 20 | 9 19 | syl5 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℕ → 𝑥 ≤ 𝐴 ) ) |
| 21 | 20 | pm4.71rd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 / 𝑥 ) ∈ ℕ ↔ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
| 22 | 21 | anbi2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) ) |
| 23 | 3anass | ⊢ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ ( 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) | |
| 24 | 22 23 | bitr4di | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 1 < 𝑥 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
| 25 | 8 24 | bitr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ↔ ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) ) ) |
| 26 | 25 | imbi1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝑥 ≠ 1 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ↔ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |
| 27 | 5 26 | bitrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |
| 28 | 27 | ralbidva | ⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( ( 𝐴 / 𝑥 ) ∈ ℕ → ( 𝑥 = 1 ∨ 𝑥 = 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℕ ( ( 1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ ( 𝐴 / 𝑥 ) ∈ ℕ ) → 𝑥 = 𝐴 ) ) ) |