This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A is a prime number (or 1)". See also isprm . (Contributed by NM, 4-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prime | |- ( A e. NN -> ( A. x e. NN ( ( A / x ) e. NN -> ( x = 1 \/ x = A ) ) <-> A. x e. NN ( ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) -> x = A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 | |- ( ( x =/= 1 -> ( ( A / x ) e. NN -> x = A ) ) <-> ( ( A / x ) e. NN -> ( x =/= 1 -> x = A ) ) ) |
|
| 2 | impexp | |- ( ( ( x =/= 1 /\ ( A / x ) e. NN ) -> x = A ) <-> ( x =/= 1 -> ( ( A / x ) e. NN -> x = A ) ) ) |
|
| 3 | neor | |- ( ( x = 1 \/ x = A ) <-> ( x =/= 1 -> x = A ) ) |
|
| 4 | 3 | imbi2i | |- ( ( ( A / x ) e. NN -> ( x = 1 \/ x = A ) ) <-> ( ( A / x ) e. NN -> ( x =/= 1 -> x = A ) ) ) |
| 5 | 1 2 4 | 3bitr4ri | |- ( ( ( A / x ) e. NN -> ( x = 1 \/ x = A ) ) <-> ( ( x =/= 1 /\ ( A / x ) e. NN ) -> x = A ) ) |
| 6 | nngt1ne1 | |- ( x e. NN -> ( 1 < x <-> x =/= 1 ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. NN /\ x e. NN ) -> ( 1 < x <-> x =/= 1 ) ) |
| 8 | 7 | anbi1d | |- ( ( A e. NN /\ x e. NN ) -> ( ( 1 < x /\ ( A / x ) e. NN ) <-> ( x =/= 1 /\ ( A / x ) e. NN ) ) ) |
| 9 | nnz | |- ( ( A / x ) e. NN -> ( A / x ) e. ZZ ) |
|
| 10 | nnre | |- ( x e. NN -> x e. RR ) |
|
| 11 | gtndiv | |- ( ( x e. RR /\ A e. NN /\ A < x ) -> -. ( A / x ) e. ZZ ) |
|
| 12 | 11 | 3expia | |- ( ( x e. RR /\ A e. NN ) -> ( A < x -> -. ( A / x ) e. ZZ ) ) |
| 13 | 10 12 | sylan | |- ( ( x e. NN /\ A e. NN ) -> ( A < x -> -. ( A / x ) e. ZZ ) ) |
| 14 | 13 | con2d | |- ( ( x e. NN /\ A e. NN ) -> ( ( A / x ) e. ZZ -> -. A < x ) ) |
| 15 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 16 | lenlt | |- ( ( x e. RR /\ A e. RR ) -> ( x <_ A <-> -. A < x ) ) |
|
| 17 | 10 15 16 | syl2an | |- ( ( x e. NN /\ A e. NN ) -> ( x <_ A <-> -. A < x ) ) |
| 18 | 14 17 | sylibrd | |- ( ( x e. NN /\ A e. NN ) -> ( ( A / x ) e. ZZ -> x <_ A ) ) |
| 19 | 18 | ancoms | |- ( ( A e. NN /\ x e. NN ) -> ( ( A / x ) e. ZZ -> x <_ A ) ) |
| 20 | 9 19 | syl5 | |- ( ( A e. NN /\ x e. NN ) -> ( ( A / x ) e. NN -> x <_ A ) ) |
| 21 | 20 | pm4.71rd | |- ( ( A e. NN /\ x e. NN ) -> ( ( A / x ) e. NN <-> ( x <_ A /\ ( A / x ) e. NN ) ) ) |
| 22 | 21 | anbi2d | |- ( ( A e. NN /\ x e. NN ) -> ( ( 1 < x /\ ( A / x ) e. NN ) <-> ( 1 < x /\ ( x <_ A /\ ( A / x ) e. NN ) ) ) ) |
| 23 | 3anass | |- ( ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) <-> ( 1 < x /\ ( x <_ A /\ ( A / x ) e. NN ) ) ) |
|
| 24 | 22 23 | bitr4di | |- ( ( A e. NN /\ x e. NN ) -> ( ( 1 < x /\ ( A / x ) e. NN ) <-> ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) ) ) |
| 25 | 8 24 | bitr3d | |- ( ( A e. NN /\ x e. NN ) -> ( ( x =/= 1 /\ ( A / x ) e. NN ) <-> ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) ) ) |
| 26 | 25 | imbi1d | |- ( ( A e. NN /\ x e. NN ) -> ( ( ( x =/= 1 /\ ( A / x ) e. NN ) -> x = A ) <-> ( ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) -> x = A ) ) ) |
| 27 | 5 26 | bitrid | |- ( ( A e. NN /\ x e. NN ) -> ( ( ( A / x ) e. NN -> ( x = 1 \/ x = A ) ) <-> ( ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) -> x = A ) ) ) |
| 28 | 27 | ralbidva | |- ( A e. NN -> ( A. x e. NN ( ( A / x ) e. NN -> ( x = 1 \/ x = A ) ) <-> A. x e. NN ( ( 1 < x /\ x <_ A /\ ( A / x ) e. NN ) -> x = A ) ) ) |