This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preleqg | |- ( ( ( A e. B /\ B e. V /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneq | |- ( A e. B -> A =/= B ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. B /\ B e. V /\ C e. D ) -> A =/= B ) |
| 3 | preq12nebg | |- ( ( A e. B /\ B e. V /\ A =/= B ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 4 | 2 3 | syld3an3 | |- ( ( A e. B /\ B e. V /\ C e. D ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 5 | eleq12 | |- ( ( A = D /\ B = C ) -> ( A e. B <-> D e. C ) ) |
|
| 6 | elnotel | |- ( D e. C -> -. C e. D ) |
|
| 7 | 6 | pm2.21d | |- ( D e. C -> ( C e. D -> ( A = C /\ B = D ) ) ) |
| 8 | 5 7 | biimtrdi | |- ( ( A = D /\ B = C ) -> ( A e. B -> ( C e. D -> ( A = C /\ B = D ) ) ) ) |
| 9 | 8 | com3l | |- ( A e. B -> ( C e. D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) |
| 10 | 9 | a1d | |- ( A e. B -> ( B e. V -> ( C e. D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) ) |
| 11 | 10 | 3imp | |- ( ( A e. B /\ B e. V /\ C e. D ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) |
| 12 | 11 | com12 | |- ( ( A = D /\ B = C ) -> ( ( A e. B /\ B e. V /\ C e. D ) -> ( A = C /\ B = D ) ) ) |
| 13 | 12 | jao1i | |- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( ( A e. B /\ B e. V /\ C e. D ) -> ( A = C /\ B = D ) ) ) |
| 14 | 13 | com12 | |- ( ( A e. B /\ B e. V /\ C e. D ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) |
| 15 | 4 14 | sylbid | |- ( ( A e. B /\ B e. V /\ C e. D ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) ) |
| 16 | 15 | imp | |- ( ( ( A e. B /\ B e. V /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) ) |