This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of preleq , not based on preleqg : Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preleq.b | ⊢ 𝐵 ∈ V | |
| preleqALT.d | ⊢ 𝐷 ∈ V | ||
| Assertion | preleqALT | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.b | ⊢ 𝐵 ∈ V | |
| 2 | preleqALT.d | ⊢ 𝐷 ∈ V | |
| 3 | 1 | jctr | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V ) ) |
| 4 | 2 | jctr | ⊢ ( 𝐶 ∈ 𝐷 → ( 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V ) ) |
| 5 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V ) ∧ ( 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 8 | 7 | ord | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 9 | en2lp | ⊢ ¬ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) | |
| 10 | eleq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶 ) ) | |
| 11 | 10 | anbi1d | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ↔ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) ) |
| 12 | 9 11 | mtbiri | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ) |
| 13 | 8 12 | syl6 | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ) ) |
| 14 | 13 | con4d | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 16 | 15 | pm2.43a | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |