This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of preleq , not based on preleqg : Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preleq.b | |- B e. _V |
|
| preleqALT.d | |- D e. _V |
||
| Assertion | preleqALT | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.b | |- B e. _V |
|
| 2 | preleqALT.d | |- D e. _V |
|
| 3 | 1 | jctr | |- ( A e. B -> ( A e. B /\ B e. _V ) ) |
| 4 | 2 | jctr | |- ( C e. D -> ( C e. D /\ D e. _V ) ) |
| 5 | preq12bg | |- ( ( ( A e. B /\ B e. _V ) /\ ( C e. D /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. B /\ C e. D ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 7 | 6 | biimpa | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
| 8 | 7 | ord | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( -. ( A = C /\ B = D ) -> ( A = D /\ B = C ) ) ) |
| 9 | en2lp | |- -. ( D e. C /\ C e. D ) |
|
| 10 | eleq12 | |- ( ( A = D /\ B = C ) -> ( A e. B <-> D e. C ) ) |
|
| 11 | 10 | anbi1d | |- ( ( A = D /\ B = C ) -> ( ( A e. B /\ C e. D ) <-> ( D e. C /\ C e. D ) ) ) |
| 12 | 9 11 | mtbiri | |- ( ( A = D /\ B = C ) -> -. ( A e. B /\ C e. D ) ) |
| 13 | 8 12 | syl6 | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( -. ( A = C /\ B = D ) -> -. ( A e. B /\ C e. D ) ) ) |
| 14 | 13 | con4d | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( ( A e. B /\ C e. D ) -> ( A = C /\ B = D ) ) ) |
| 15 | 14 | ex | |- ( ( A e. B /\ C e. D ) -> ( { A , B } = { C , D } -> ( ( A e. B /\ C e. D ) -> ( A = C /\ B = D ) ) ) ) |
| 16 | 15 | pm2.43a | |- ( ( A e. B /\ C e. D ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) ) |
| 17 | 16 | imp | |- ( ( ( A e. B /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) ) |