This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predep | ⊢ ( 𝑋 ∈ 𝐵 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | ⊢ Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ E “ { 𝑋 } ) ) | |
| 2 | relcnv | ⊢ Rel ◡ E | |
| 3 | relimasn | ⊢ ( Rel ◡ E → ( ◡ E “ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ◡ E 𝑦 } ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ◡ E “ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ◡ E 𝑦 } |
| 5 | brcnvg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ V ) → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 E 𝑋 ) ) | |
| 6 | 5 | elvd | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 E 𝑋 ) ) |
| 7 | epelg | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑦 E 𝑋 ↔ 𝑦 ∈ 𝑋 ) ) | |
| 8 | 6 7 | bitrd | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑋 ) ) |
| 9 | 8 | eqabcdv | ⊢ ( 𝑋 ∈ 𝐵 → { 𝑦 ∣ 𝑋 ◡ E 𝑦 } = 𝑋 ) |
| 10 | 4 9 | eqtrid | ⊢ ( 𝑋 ∈ 𝐵 → ( ◡ E “ { 𝑋 } ) = 𝑋 ) |
| 11 | 10 | ineq2d | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 ∩ ( ◡ E “ { 𝑋 } ) ) = ( 𝐴 ∩ 𝑋 ) ) |
| 12 | 1 11 | eqtrid | ⊢ ( 𝑋 ∈ 𝐵 → Pred ( E , 𝐴 , 𝑋 ) = ( 𝐴 ∩ 𝑋 ) ) |