This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a singleton. (Contributed by NM, 20-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relimasn | ⊢ ( Rel 𝑅 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 2 | imaeq2 | ⊢ ( { 𝐴 } = ∅ → ( 𝑅 “ { 𝐴 } ) = ( 𝑅 “ ∅ ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = ( 𝑅 “ ∅ ) ) |
| 4 | ima0 | ⊢ ( 𝑅 “ ∅ ) = ∅ | |
| 5 | 3 4 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = ∅ ) |
| 6 | 5 | adantl | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 “ { 𝐴 } ) = ∅ ) |
| 7 | brrelex1 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝑥 ) → 𝐴 ∈ V ) | |
| 8 | 7 | stoic1a | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑅 𝑥 ) |
| 9 | 8 | alrimiv | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ∀ 𝑥 ¬ 𝐴 𝑅 𝑥 ) |
| 10 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 11 | 10 | ab0w | ⊢ ( { 𝑦 ∣ 𝐴 𝑅 𝑦 } = ∅ ↔ ∀ 𝑥 ¬ 𝐴 𝑅 𝑥 ) |
| 12 | 9 11 | sylibr | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → { 𝑦 ∣ 𝐴 𝑅 𝑦 } = ∅ ) |
| 13 | 6 12 | eqtr4d | ⊢ ( ( Rel 𝑅 ∧ ¬ 𝐴 ∈ V ) → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
| 14 | 13 | ex | ⊢ ( Rel 𝑅 → ( ¬ 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) ) |
| 15 | imasng | ⊢ ( 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) | |
| 16 | 14 15 | pm2.61d2 | ⊢ ( Rel 𝑅 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |