This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predep | |- ( X e. B -> Pred ( _E , A , X ) = ( A i^i X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | |- Pred ( _E , A , X ) = ( A i^i ( `' _E " { X } ) ) |
|
| 2 | relcnv | |- Rel `' _E |
|
| 3 | relimasn | |- ( Rel `' _E -> ( `' _E " { X } ) = { y | X `' _E y } ) |
|
| 4 | 2 3 | ax-mp | |- ( `' _E " { X } ) = { y | X `' _E y } |
| 5 | brcnvg | |- ( ( X e. B /\ y e. _V ) -> ( X `' _E y <-> y _E X ) ) |
|
| 6 | 5 | elvd | |- ( X e. B -> ( X `' _E y <-> y _E X ) ) |
| 7 | epelg | |- ( X e. B -> ( y _E X <-> y e. X ) ) |
|
| 8 | 6 7 | bitrd | |- ( X e. B -> ( X `' _E y <-> y e. X ) ) |
| 9 | 8 | eqabcdv | |- ( X e. B -> { y | X `' _E y } = X ) |
| 10 | 4 9 | eqtrid | |- ( X e. B -> ( `' _E " { X } ) = X ) |
| 11 | 10 | ineq2d | |- ( X e. B -> ( A i^i ( `' _E " { X } ) ) = ( A i^i X ) ) |
| 12 | 1 11 | eqtrid | |- ( X e. B -> Pred ( _E , A , X ) = ( A i^i X ) ) |