This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| Assertion | prdsms | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> Y e. MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| 2 | msxms | |- ( x e. MetSp -> x e. *MetSp ) |
|
| 3 | 2 | ssriv | |- MetSp C_ *MetSp |
| 4 | fss | |- ( ( R : I --> MetSp /\ MetSp C_ *MetSp ) -> R : I --> *MetSp ) |
|
| 5 | 3 4 | mpan2 | |- ( R : I --> MetSp -> R : I --> *MetSp ) |
| 6 | 1 | prdsxms | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> Y e. *MetSp ) |
| 7 | 5 6 | syl3an3 | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> Y e. *MetSp ) |
| 8 | simp1 | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> S e. W ) |
|
| 9 | simp2 | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> I e. Fin ) |
|
| 10 | eqid | |- ( dist ` Y ) = ( dist ` Y ) |
|
| 11 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 12 | simp3 | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> R : I --> MetSp ) |
|
| 13 | 1 8 9 10 11 12 | prdsmslem1 | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> ( dist ` Y ) e. ( Met ` ( Base ` Y ) ) ) |
| 14 | ssid | |- ( Base ` Y ) C_ ( Base ` Y ) |
|
| 15 | metres2 | |- ( ( ( dist ` Y ) e. ( Met ` ( Base ` Y ) ) /\ ( Base ` Y ) C_ ( Base ` Y ) ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) |
|
| 16 | 13 14 15 | sylancl | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) |
| 17 | eqid | |- ( TopOpen ` Y ) = ( TopOpen ` Y ) |
|
| 18 | eqid | |- ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) = ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
|
| 19 | 17 11 18 | isms | |- ( Y e. MetSp <-> ( Y e. *MetSp /\ ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( Met ` ( Base ` Y ) ) ) ) |
| 20 | 7 16 19 | sylanbrc | |- ( ( S e. W /\ I e. Fin /\ R : I --> MetSp ) -> Y e. MetSp ) |