This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmgp.y | |- Y = ( S Xs_ R ) |
|
| prdsmgp.m | |- M = ( mulGrp ` Y ) |
||
| prdsmgp.z | |- Z = ( S Xs_ ( mulGrp o. R ) ) |
||
| prdsmgp.i | |- ( ph -> I e. V ) |
||
| prdsmgp.s | |- ( ph -> S e. W ) |
||
| prdsmgp.r | |- ( ph -> R Fn I ) |
||
| Assertion | prdsmgp | |- ( ph -> ( ( Base ` M ) = ( Base ` Z ) /\ ( +g ` M ) = ( +g ` Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmgp.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsmgp.m | |- M = ( mulGrp ` Y ) |
|
| 3 | prdsmgp.z | |- Z = ( S Xs_ ( mulGrp o. R ) ) |
|
| 4 | prdsmgp.i | |- ( ph -> I e. V ) |
|
| 5 | prdsmgp.s | |- ( ph -> S e. W ) |
|
| 6 | prdsmgp.r | |- ( ph -> R Fn I ) |
|
| 7 | eqid | |- ( mulGrp ` ( R ` x ) ) = ( mulGrp ` ( R ` x ) ) |
|
| 8 | eqid | |- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
|
| 9 | 7 8 | mgpbas | |- ( Base ` ( R ` x ) ) = ( Base ` ( mulGrp ` ( R ` x ) ) ) |
| 10 | fvco2 | |- ( ( R Fn I /\ x e. I ) -> ( ( mulGrp o. R ) ` x ) = ( mulGrp ` ( R ` x ) ) ) |
|
| 11 | 6 10 | sylan | |- ( ( ph /\ x e. I ) -> ( ( mulGrp o. R ) ` x ) = ( mulGrp ` ( R ` x ) ) ) |
| 12 | 11 | eqcomd | |- ( ( ph /\ x e. I ) -> ( mulGrp ` ( R ` x ) ) = ( ( mulGrp o. R ) ` x ) ) |
| 13 | 12 | fveq2d | |- ( ( ph /\ x e. I ) -> ( Base ` ( mulGrp ` ( R ` x ) ) ) = ( Base ` ( ( mulGrp o. R ) ` x ) ) ) |
| 14 | 9 13 | eqtrid | |- ( ( ph /\ x e. I ) -> ( Base ` ( R ` x ) ) = ( Base ` ( ( mulGrp o. R ) ` x ) ) ) |
| 15 | 14 | ixpeq2dva | |- ( ph -> X_ x e. I ( Base ` ( R ` x ) ) = X_ x e. I ( Base ` ( ( mulGrp o. R ) ` x ) ) ) |
| 16 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 17 | 2 16 | mgpbas | |- ( Base ` Y ) = ( Base ` M ) |
| 18 | 17 | eqcomi | |- ( Base ` M ) = ( Base ` Y ) |
| 19 | 1 18 5 4 6 | prdsbas2 | |- ( ph -> ( Base ` M ) = X_ x e. I ( Base ` ( R ` x ) ) ) |
| 20 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 21 | fnmgp | |- mulGrp Fn _V |
|
| 22 | ssv | |- ran R C_ _V |
|
| 23 | 22 | a1i | |- ( ph -> ran R C_ _V ) |
| 24 | fnco | |- ( ( mulGrp Fn _V /\ R Fn I /\ ran R C_ _V ) -> ( mulGrp o. R ) Fn I ) |
|
| 25 | 21 6 23 24 | mp3an2i | |- ( ph -> ( mulGrp o. R ) Fn I ) |
| 26 | 3 20 5 4 25 | prdsbas2 | |- ( ph -> ( Base ` Z ) = X_ x e. I ( Base ` ( ( mulGrp o. R ) ` x ) ) ) |
| 27 | 15 19 26 | 3eqtr4d | |- ( ph -> ( Base ` M ) = ( Base ` Z ) ) |
| 28 | eqid | |- ( .r ` Y ) = ( .r ` Y ) |
|
| 29 | 2 28 | mgpplusg | |- ( .r ` Y ) = ( +g ` M ) |
| 30 | eqid | |- ( mulGrp ` ( R ` z ) ) = ( mulGrp ` ( R ` z ) ) |
|
| 31 | eqid | |- ( .r ` ( R ` z ) ) = ( .r ` ( R ` z ) ) |
|
| 32 | 30 31 | mgpplusg | |- ( .r ` ( R ` z ) ) = ( +g ` ( mulGrp ` ( R ` z ) ) ) |
| 33 | fvco2 | |- ( ( R Fn I /\ z e. I ) -> ( ( mulGrp o. R ) ` z ) = ( mulGrp ` ( R ` z ) ) ) |
|
| 34 | 6 33 | sylan | |- ( ( ph /\ z e. I ) -> ( ( mulGrp o. R ) ` z ) = ( mulGrp ` ( R ` z ) ) ) |
| 35 | 34 | eqcomd | |- ( ( ph /\ z e. I ) -> ( mulGrp ` ( R ` z ) ) = ( ( mulGrp o. R ) ` z ) ) |
| 36 | 35 | fveq2d | |- ( ( ph /\ z e. I ) -> ( +g ` ( mulGrp ` ( R ` z ) ) ) = ( +g ` ( ( mulGrp o. R ) ` z ) ) ) |
| 37 | 32 36 | eqtrid | |- ( ( ph /\ z e. I ) -> ( .r ` ( R ` z ) ) = ( +g ` ( ( mulGrp o. R ) ` z ) ) ) |
| 38 | 37 | oveqd | |- ( ( ph /\ z e. I ) -> ( ( x ` z ) ( .r ` ( R ` z ) ) ( y ` z ) ) = ( ( x ` z ) ( +g ` ( ( mulGrp o. R ) ` z ) ) ( y ` z ) ) ) |
| 39 | 38 | mpteq2dva | |- ( ph -> ( z e. I |-> ( ( x ` z ) ( .r ` ( R ` z ) ) ( y ` z ) ) ) = ( z e. I |-> ( ( x ` z ) ( +g ` ( ( mulGrp o. R ) ` z ) ) ( y ` z ) ) ) ) |
| 40 | 27 27 39 | mpoeq123dv | |- ( ph -> ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( z e. I |-> ( ( x ` z ) ( .r ` ( R ` z ) ) ( y ` z ) ) ) ) = ( x e. ( Base ` Z ) , y e. ( Base ` Z ) |-> ( z e. I |-> ( ( x ` z ) ( +g ` ( ( mulGrp o. R ) ` z ) ) ( y ` z ) ) ) ) ) |
| 41 | fnex | |- ( ( R Fn I /\ I e. V ) -> R e. _V ) |
|
| 42 | 6 4 41 | syl2anc | |- ( ph -> R e. _V ) |
| 43 | 6 | fndmd | |- ( ph -> dom R = I ) |
| 44 | 1 5 42 18 43 28 | prdsmulr | |- ( ph -> ( .r ` Y ) = ( x e. ( Base ` M ) , y e. ( Base ` M ) |-> ( z e. I |-> ( ( x ` z ) ( .r ` ( R ` z ) ) ( y ` z ) ) ) ) ) |
| 45 | fnex | |- ( ( ( mulGrp o. R ) Fn I /\ I e. V ) -> ( mulGrp o. R ) e. _V ) |
|
| 46 | 25 4 45 | syl2anc | |- ( ph -> ( mulGrp o. R ) e. _V ) |
| 47 | 25 | fndmd | |- ( ph -> dom ( mulGrp o. R ) = I ) |
| 48 | eqid | |- ( +g ` Z ) = ( +g ` Z ) |
|
| 49 | 3 5 46 20 47 48 | prdsplusg | |- ( ph -> ( +g ` Z ) = ( x e. ( Base ` Z ) , y e. ( Base ` Z ) |-> ( z e. I |-> ( ( x ` z ) ( +g ` ( ( mulGrp o. R ) ` z ) ) ( y ` z ) ) ) ) ) |
| 50 | 40 44 49 | 3eqtr4d | |- ( ph -> ( .r ` Y ) = ( +g ` Z ) ) |
| 51 | 29 50 | eqtr3id | |- ( ph -> ( +g ` M ) = ( +g ` Z ) ) |
| 52 | 27 51 | jca | |- ( ph -> ( ( Base ` M ) = ( Base ` Z ) /\ ( +g ` M ) = ( +g ` Z ) ) ) |