This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppival2g | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 3 | ppival | ⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
| 5 | ppisval2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 6 | 1 5 | sylan | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 7 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐴 ∈ ℤ → ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) = ( 𝑀 ... 𝐴 ) ) |
| 9 | 8 | ineq1d | ⊢ ( 𝐴 ∈ ℤ → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |
| 13 | 4 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |