This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | poslubd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| poslubd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| poslubd.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| poslubd.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| poslubd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| poslubd.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | ||
| poslubd.ub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) | ||
| poslubd.le | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) | ||
| Assertion | poslubd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poslubd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | poslubd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | poslubd.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | poslubd.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | poslubd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | poslubd.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) | |
| 7 | poslubd.ub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) | |
| 8 | poslubd.le | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) | |
| 9 | biid | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) | |
| 10 | 2 1 3 9 4 5 | lubval | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
| 11 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ) |
| 12 | 8 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) |
| 14 | 11 13 | jca | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑧 = 𝑇 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑇 ) ) | |
| 16 | 15 | ralbidv | ⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ) ) |
| 17 | breq1 | ⊢ ( 𝑧 = 𝑇 → ( 𝑧 ≤ 𝑦 ↔ 𝑇 ≤ 𝑦 ) ) | |
| 18 | 17 | imbi2d | ⊢ ( 𝑧 = 𝑇 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
| 20 | 16 19 | anbi12d | ⊢ ( 𝑧 = 𝑇 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) ) |
| 21 | 20 | rspcev | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 22 | 6 14 21 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 23 | 1 2 | poslubmo | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 24 | 4 5 23 | syl2anc | ⊢ ( 𝜑 → ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 25 | reu5 | ⊢ ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ∧ ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) | |
| 26 | 22 24 25 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
| 27 | 20 | riota2 | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ↔ ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) ) |
| 28 | 6 26 27 | syl2anc | ⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ↔ ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) ) |
| 29 | 14 28 | mpbid | ⊢ ( 𝜑 → ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) |
| 30 | 10 29 | eqtrd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |