This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pocnv | ⊢ ( 𝑅 Po 𝐴 → ◡ 𝑅 Po 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 2 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) |
| 4 | 1 3 | sylnibr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ◡ 𝑅 𝑥 ) |
| 5 | 3anrev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 6 | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑧 𝑅 𝑥 ) ) | |
| 7 | 5 6 | sylan2b | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑧 𝑅 𝑥 ) ) |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 2 8 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 10 | vex | ⊢ 𝑧 ∈ V | |
| 11 | 8 10 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 12 | 9 11 | anbi12ci | ⊢ ( ( 𝑥 ◡ 𝑅 𝑦 ∧ 𝑦 ◡ 𝑅 𝑧 ) ↔ ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
| 13 | 2 10 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑥 ) |
| 14 | 7 12 13 | 3imtr4g | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ◡ 𝑅 𝑦 ∧ 𝑦 ◡ 𝑅 𝑧 ) → 𝑥 ◡ 𝑅 𝑧 ) ) |
| 15 | 4 14 | ispod | ⊢ ( 𝑅 Po 𝐴 → ◡ 𝑅 Po 𝐴 ) |