This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pocnv | |- ( R Po A -> `' R Po A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | |- ( ( R Po A /\ x e. A ) -> -. x R x ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 2 | brcnv | |- ( x `' R x <-> x R x ) |
| 4 | 1 3 | sylnibr | |- ( ( R Po A /\ x e. A ) -> -. x `' R x ) |
| 5 | 3anrev | |- ( ( x e. A /\ y e. A /\ z e. A ) <-> ( z e. A /\ y e. A /\ x e. A ) ) |
|
| 6 | potr | |- ( ( R Po A /\ ( z e. A /\ y e. A /\ x e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
|
| 7 | 5 6 | sylan2b | |- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
| 8 | vex | |- y e. _V |
|
| 9 | 2 8 | brcnv | |- ( x `' R y <-> y R x ) |
| 10 | vex | |- z e. _V |
|
| 11 | 8 10 | brcnv | |- ( y `' R z <-> z R y ) |
| 12 | 9 11 | anbi12ci | |- ( ( x `' R y /\ y `' R z ) <-> ( z R y /\ y R x ) ) |
| 13 | 2 10 | brcnv | |- ( x `' R z <-> z R x ) |
| 14 | 7 12 13 | 3imtr4g | |- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x `' R y /\ y `' R z ) -> x `' R z ) ) |
| 15 | 4 14 | ispod | |- ( R Po A -> `' R Po A ) |