This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characteristic properties of a partial order in class notation. (Contributed by NM, 27-Mar-1997) Reduce axiom usage and shorten proof. (Revised by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pocl | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 2 | 1 | biimpi | ⊢ ( 𝑅 Po 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 3 | id | ⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) | |
| 4 | 3 3 | breq12d | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑥 ↔ 𝐵 𝑅 𝐵 ) ) |
| 5 | 4 | notbid | ⊢ ( 𝑥 = 𝐵 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
| 6 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝐵 𝑅 𝑦 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑧 ↔ 𝐵 𝑅 𝑧 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) |
| 10 | 5 9 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐵 𝑅 𝑦 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 12 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝑧 ↔ 𝐶 𝑅 𝑧 ) ) | |
| 13 | 11 12 | anbi12d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) ) ) |
| 14 | 13 | imbi1d | ⊢ ( 𝑦 = 𝐶 → ( ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) |
| 15 | 14 | anbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) |
| 16 | breq2 | ⊢ ( 𝑧 = 𝐷 → ( 𝐶 𝑅 𝑧 ↔ 𝐶 𝑅 𝐷 ) ) | |
| 17 | 16 | anbi2d | ⊢ ( 𝑧 = 𝐷 → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ) ) |
| 18 | breq2 | ⊢ ( 𝑧 = 𝐷 → ( 𝐵 𝑅 𝑧 ↔ 𝐵 𝑅 𝐷 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑧 = 𝐷 → ( ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑧 = 𝐷 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |
| 21 | 10 15 20 | rspc3v | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |
| 22 | 2 21 | syl5com | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |