This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characteristic properties of a partial order in class notation. (Contributed by NM, 27-Mar-1997) Reduce axiom usage and shorten proof. (Revised by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pocl | |- ( R Po A -> ( ( B e. A /\ C e. A /\ D e. A ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po | |- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
|
| 2 | 1 | biimpi | |- ( R Po A -> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 3 | id | |- ( x = B -> x = B ) |
|
| 4 | 3 3 | breq12d | |- ( x = B -> ( x R x <-> B R B ) ) |
| 5 | 4 | notbid | |- ( x = B -> ( -. x R x <-> -. B R B ) ) |
| 6 | breq1 | |- ( x = B -> ( x R y <-> B R y ) ) |
|
| 7 | 6 | anbi1d | |- ( x = B -> ( ( x R y /\ y R z ) <-> ( B R y /\ y R z ) ) ) |
| 8 | breq1 | |- ( x = B -> ( x R z <-> B R z ) ) |
|
| 9 | 7 8 | imbi12d | |- ( x = B -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( B R y /\ y R z ) -> B R z ) ) ) |
| 10 | 5 9 | anbi12d | |- ( x = B -> ( ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> ( -. B R B /\ ( ( B R y /\ y R z ) -> B R z ) ) ) ) |
| 11 | breq2 | |- ( y = C -> ( B R y <-> B R C ) ) |
|
| 12 | breq1 | |- ( y = C -> ( y R z <-> C R z ) ) |
|
| 13 | 11 12 | anbi12d | |- ( y = C -> ( ( B R y /\ y R z ) <-> ( B R C /\ C R z ) ) ) |
| 14 | 13 | imbi1d | |- ( y = C -> ( ( ( B R y /\ y R z ) -> B R z ) <-> ( ( B R C /\ C R z ) -> B R z ) ) ) |
| 15 | 14 | anbi2d | |- ( y = C -> ( ( -. B R B /\ ( ( B R y /\ y R z ) -> B R z ) ) <-> ( -. B R B /\ ( ( B R C /\ C R z ) -> B R z ) ) ) ) |
| 16 | breq2 | |- ( z = D -> ( C R z <-> C R D ) ) |
|
| 17 | 16 | anbi2d | |- ( z = D -> ( ( B R C /\ C R z ) <-> ( B R C /\ C R D ) ) ) |
| 18 | breq2 | |- ( z = D -> ( B R z <-> B R D ) ) |
|
| 19 | 17 18 | imbi12d | |- ( z = D -> ( ( ( B R C /\ C R z ) -> B R z ) <-> ( ( B R C /\ C R D ) -> B R D ) ) ) |
| 20 | 19 | anbi2d | |- ( z = D -> ( ( -. B R B /\ ( ( B R C /\ C R z ) -> B R z ) ) <-> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
| 21 | 10 15 20 | rspc3v | |- ( ( B e. A /\ C e. A /\ D e. A ) -> ( A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
| 22 | 2 21 | syl5com | |- ( R Po A -> ( ( B e. A /\ C e. A /\ D e. A ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |