This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
pnfaddmnf
Metamath Proof Explorer
Description: Addition of positive and negative infinity. This is often taken to be a
"null" value or out of the domain, but we define it (somewhat arbitrarily)
to be zero so that the resulting function is total, which simplifies
proofs. (Contributed by Mario Carneiro , 20-Aug-2015)
Ref
Expression
Assertion
pnfaddmnf
⊢ +∞ + 𝑒 −∞ = 0
Proof
Step
Hyp
Ref
Expression
1
pnfxr
⊢ +∞ ∈ ℝ *
2
mnfxr
⊢ −∞ ∈ ℝ *
3
xaddval
⊢ +∞ ∈ ℝ * ∧ −∞ ∈ ℝ * → +∞ + 𝑒 −∞ = if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞
4
1 2 3
mp2an
⊢ +∞ + 𝑒 −∞ = if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞
5
eqid
⊢ +∞ = +∞
6
5
iftruei
⊢ if +∞ = +∞ if −∞ = −∞ 0 +∞ if +∞ = −∞ if −∞ = +∞ 0 −∞ if −∞ = +∞ +∞ if −∞ = −∞ −∞ +∞ + −∞ = if −∞ = −∞ 0 +∞
7
eqid
⊢ −∞ = −∞
8
7
iftruei
⊢ if −∞ = −∞ 0 +∞ = 0
9
4 6 8
3eqtri
⊢ +∞ + 𝑒 −∞ = 0