This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| Assertion | pmtrval | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | |- T = ( pmTrsp ` D ) |
|
| 2 | 1 | pmtrfval | |- ( D e. V -> T = ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |
| 3 | 2 | fveq1d | |- ( D e. V -> ( T ` P ) = ( ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ` P ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) = ( ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ` P ) ) |
| 5 | eqid | |- ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
|
| 6 | eleq2 | |- ( p = P -> ( z e. p <-> z e. P ) ) |
|
| 7 | difeq1 | |- ( p = P -> ( p \ { z } ) = ( P \ { z } ) ) |
|
| 8 | 7 | unieqd | |- ( p = P -> U. ( p \ { z } ) = U. ( P \ { z } ) ) |
| 9 | 6 8 | ifbieq1d | |- ( p = P -> if ( z e. p , U. ( p \ { z } ) , z ) = if ( z e. P , U. ( P \ { z } ) , z ) ) |
| 10 | 9 | mpteq2dv | |- ( p = P -> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |
| 11 | breq1 | |- ( y = P -> ( y ~~ 2o <-> P ~~ 2o ) ) |
|
| 12 | elpw2g | |- ( D e. V -> ( P e. ~P D <-> P C_ D ) ) |
|
| 13 | 12 | biimpar | |- ( ( D e. V /\ P C_ D ) -> P e. ~P D ) |
| 14 | 13 | 3adant3 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P e. ~P D ) |
| 15 | simp3 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P ~~ 2o ) |
|
| 16 | 11 14 15 | elrabd | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P e. { y e. ~P D | y ~~ 2o } ) |
| 17 | mptexg | |- ( D e. V -> ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) e. _V ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) e. _V ) |
| 19 | 5 10 16 18 | fvmptd3 | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( ( p e. { y e. ~P D | y ~~ 2o } |-> ( z e. D |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ` P ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |
| 20 | 4 19 | eqtrd | |- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) = ( z e. D |-> if ( z e. P , U. ( P \ { z } ) , z ) ) ) |