This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | ||
| Assertion | pmtrrn2 | ⊢ ( 𝐹 ∈ 𝑅 → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | pmtrrn.r | ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid | ⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) | |
| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
| 5 | 4 | simpld | ⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
| 6 | 5 | simp3d | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
| 7 | en2 | ⊢ ( dom ( 𝐹 ∖ I ) ≈ 2o → ∃ 𝑥 ∃ 𝑦 dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐹 ∈ 𝑅 → ∃ 𝑥 ∃ 𝑦 dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } ) |
| 9 | 5 | simp2d | ⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
| 10 | 4 | simprd | ⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
| 11 | 9 6 10 | jca32 | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) ) |
| 12 | sseq1 | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( dom ( 𝐹 ∖ I ) ⊆ 𝐷 ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) ) | |
| 13 | breq1 | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( dom ( 𝐹 ∖ I ) ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) ) | |
| 14 | fveq2 | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) | |
| 15 | 14 | eqeq2d | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ↔ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ↔ ( { 𝑥 , 𝑦 } ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 17 | 12 16 | anbi12d | ⊢ ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ( { 𝑥 , 𝑦 } ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) ) |
| 18 | 11 17 | syl5ibcom | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ( { 𝑥 , 𝑦 } ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) ) |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 19 20 | prss | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 22 | 21 | bicomi | ⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) |
| 23 | pr2ne | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) ) | |
| 24 | 23 | el2v | ⊢ ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) |
| 25 | 24 | anbi1i | ⊢ ( ( { 𝑥 , 𝑦 } ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ↔ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 26 | 22 25 | anbi12i | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ( { 𝑥 , 𝑦 } ≈ 2o ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 27 | 18 26 | imbitrdi | ⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) ) |
| 28 | 27 | 2eximdv | ⊢ ( 𝐹 ∈ 𝑅 → ( ∃ 𝑥 ∃ 𝑦 dom ( 𝐹 ∖ I ) = { 𝑥 , 𝑦 } → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) ) |
| 29 | 8 28 | mpd | ⊢ ( 𝐹 ∈ 𝑅 → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 30 | r2ex | ⊢ ( ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) ) | |
| 31 | 29 30 | sylibr | ⊢ ( 𝐹 ∈ 𝑅 → ∃ 𝑥 ∈ 𝐷 ∃ 𝑦 ∈ 𝐷 ( 𝑥 ≠ 𝑦 ∧ 𝐹 = ( 𝑇 ‘ { 𝑥 , 𝑦 } ) ) ) |