This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrprfv3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑍 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | simp1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐷 ∈ 𝑉 ) | |
| 3 | simp1 | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → 𝑋 ∈ 𝐷 ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑋 ∈ 𝐷 ) |
| 5 | simp22 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑌 ∈ 𝐷 ) | |
| 6 | 4 5 | prssd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑋 , 𝑌 } ⊆ 𝐷 ) |
| 7 | enpr2 | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ≈ 2o ) | |
| 8 | 7 | 3expia | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 ≠ 𝑌 → { 𝑋 , 𝑌 } ≈ 2o ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → ( 𝑋 ≠ 𝑌 → { 𝑋 , 𝑌 } ≈ 2o ) ) |
| 10 | 9 | com12 | ⊢ ( 𝑋 ≠ 𝑌 → ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → { 𝑋 , 𝑌 } ≈ 2o ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → { 𝑋 , 𝑌 } ≈ 2o ) ) |
| 12 | 11 | impcom | ⊢ ( ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑋 , 𝑌 } ≈ 2o ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑋 , 𝑌 } ≈ 2o ) |
| 14 | simp23 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑍 ∈ 𝐷 ) | |
| 15 | 1 | pmtrfv | ⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ { 𝑋 , 𝑌 } ⊆ 𝐷 ∧ { 𝑋 , 𝑌 } ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑍 ) = if ( 𝑍 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑍 } ) , 𝑍 ) ) |
| 16 | 2 6 13 14 15 | syl31anc | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑍 ) = if ( 𝑍 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑍 } ) , 𝑍 ) ) |
| 17 | necom | ⊢ ( 𝑋 ≠ 𝑍 ↔ 𝑍 ≠ 𝑋 ) | |
| 18 | 17 | biimpi | ⊢ ( 𝑋 ≠ 𝑍 → 𝑍 ≠ 𝑋 ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → 𝑍 ≠ 𝑋 ) |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑍 ≠ 𝑋 ) |
| 21 | necom | ⊢ ( 𝑌 ≠ 𝑍 ↔ 𝑍 ≠ 𝑌 ) | |
| 22 | 21 | biimpi | ⊢ ( 𝑌 ≠ 𝑍 → 𝑍 ≠ 𝑌 ) |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → 𝑍 ≠ 𝑌 ) |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑍 ≠ 𝑌 ) |
| 25 | 20 24 | nelprd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ¬ 𝑍 ∈ { 𝑋 , 𝑌 } ) |
| 26 | 25 | iffalsed | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → if ( 𝑍 ∈ { 𝑋 , 𝑌 } , ∪ ( { 𝑋 , 𝑌 } ∖ { 𝑍 } ) , 𝑍 ) = 𝑍 ) |
| 27 | 16 26 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑍 ) = 𝑍 ) |