This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pmtr | ⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpmtr | ⊢ pmTrsp | |
| 1 | vd | ⊢ 𝑑 | |
| 2 | cvv | ⊢ V | |
| 3 | vp | ⊢ 𝑝 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 1 | cv | ⊢ 𝑑 |
| 6 | 5 | cpw | ⊢ 𝒫 𝑑 |
| 7 | 4 | cv | ⊢ 𝑦 |
| 8 | cen | ⊢ ≈ | |
| 9 | c2o | ⊢ 2o | |
| 10 | 7 9 8 | wbr | ⊢ 𝑦 ≈ 2o |
| 11 | 10 4 6 | crab | ⊢ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } |
| 12 | vz | ⊢ 𝑧 | |
| 13 | 12 | cv | ⊢ 𝑧 |
| 14 | 3 | cv | ⊢ 𝑝 |
| 15 | 13 14 | wcel | ⊢ 𝑧 ∈ 𝑝 |
| 16 | 13 | csn | ⊢ { 𝑧 } |
| 17 | 14 16 | cdif | ⊢ ( 𝑝 ∖ { 𝑧 } ) |
| 18 | 17 | cuni | ⊢ ∪ ( 𝑝 ∖ { 𝑧 } ) |
| 19 | 15 18 13 | cif | ⊢ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) |
| 20 | 12 5 19 | cmpt | ⊢ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) |
| 21 | 3 11 20 | cmpt | ⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 22 | 1 2 21 | cmpt | ⊢ ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 23 | 0 22 | wceq | ⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |